

A platform technology for hyperbaric blood oxygenation!

CARBON MONOXIDE POISONING

Inhalation of carbon monoxide (CO)

Blocked O₂ transport

Internal suffocation

Time is critical!

- Carbon monoxide (CO) is the most common cause of injury and death due to poisoning worldwide.
- Most common causes of CO poisonings are house fires, faulty heating systems, industrial accidents, and suicide attempts.

CURRENT TREATMENT

3

"The primary goal of therapy is to eliminate carbon monoxide from the body to avert acute and long-term consequences"*

 Two treatment options: Pure oxygen at normal pressure via oxygen mask or in a pressure chamber.

- Oxygen masks are highly available but inefficient.
- Pressure chambers are efficient but rare (in Germany only 4 available 24/7 with intensive care), resulting in long transportation and waiting times.
- Pressure chambers are room-sized devices that cost € 1 – 1.5 mn.

* DIVI e.V. S2k-Leitlinie Diagnostik und Therapie der Kohlenmonoxidvergiftung 2021.

** Sykes OT, Walker E. The neurotoxicology of carbon monoxide - Historical perspective and review. Cortex 2016; 74:440–8. ***Hampson NB. Cost of accidental carbon monoxide poisoning: A preventable expense. Prev Med Rep 2016; 3:21–4.

- The HBOX is a mobile, dialysis-like device that greatly increases the partial pressure of oxygen in the blood.
- CO elimination of the patient is amplified, reaching elimination rates of a pressure chamber.
- We are revolutionizing the treatment of CO poisoning by essentially bringing the pressure chamber to the patient.

Prototype

Control

1. Minimally invasive venous access (dialysis-like)

2. Extracorporeal blood loop with flow of ~300 mL/min

3. Oxygenation of the blood under high pressure

4. Duration of treatment: ~1-2 hours

THE HBOX – SCHEMATIC OVERVIEW OF HYPERBARIC TECHNOLOGY

- CO binds with 250-fold higher affinity to hemoglobin compared to O₂.
- To remove the CO from the hemoglobin in the blood a large amount of O₂ is required.
- Under increased pressure more O₂ can be dissolved in the blood.
- Through additional increase of the gas pressure significantly more O₂ can be dissolved into the blood.

OUR TRACTION

We are giving the patient a 2nd lung

First results show less apoptosis (cell death) in hearts and brains of pigs treated with HBOX!

Blood damage
clinically insignificant

INCUBATION PROGRAM

COMPETITORS

9

	ClearMate™*	ECCOR-P**	Infusion drug***	HBOX
Clinical relevance	Ο	\checkmark	\checkmark	\checkmark
Short time-to-market	\checkmark	Ο	×	\checkmark
Direct elimination approach	× (Lung)	🗸 (Blood)	✓ (Blood)	🗸 (Blood)
Simplicity	\checkmark	×	\checkmark	\checkmark
	Only for light CO poisonings and approach via lungs not ideal in burn	University research, commercialisation intentions unkown.	Very early stage: mouse model. Over 95% of drugs still fail at this stage.	

Cumbersome technology.

* Zavorsky GS et al. Rates of carbon monoxide elimination in males and females. Physiological reports 2014; 2(12).

victims.

- * Sein Anand J et al. Hyperventilation with Maintenance of Isocapnia. An "Old New" Method in Carbon Monoxide Intoxication. PLoS One 2017; 12(1):e0170621.
- ** Fischbach A, et al. Veno-venous extracorporeal blood phototherapy increases the rate of carbon monoxide (CO) elimination in CO-poisoned pigs. Lasers Surg Med 2021.

***Azarov I, et al. Five-coordinate H64Q neuroglobin as a ligand-trap antidote for carbon monoxide poisoning. Sci Transl Med 2016; 8(368):368ra173.

- The HBOX consists of a reusable hardware unit (console) and disposables that are disposed of after each use.
- The disposables generate recurring revenue.

GLOBAL MARKET POTENTIAL CO REMOVAL

Based on HBOX price of € 7,500 and number of clinically treated CO poisoning patients; HBOX price derived from € 7,500 cost for 3 pressure chamber treatments

Total global market potential: € 3.4 bn

MARKET POTENTIAL CO REMOVAL – RELEVANT EUROPE & USA & CA

12

€ 400 mn market potential**

USA & CA

53,000 patients

17,300 clinically treated patients, HBOX price € 7,500, current flat fee for pressure chamber treatment € 7,500

53,000 clinically treated patients, HBOX price € 7,500, current flat fee for pressure chamber treatment € 7,500

*** Mattiuzzi C, Lippi G. Worldwide epidemiology of carbon monoxide poisoning. Hum Exp Toxicol. 2020 Apr;39(4):387-392

**** Hampson NB. Cost of accidental carbon monoxide poisoning: A preventable expense. Prev Med Rep 2016; 3:21–4.

- Incidence of CO poisoning taken from Mattiuzzi2020***
- Cases shown are eligible for HBOX treatment because they are medium to severe CO poisonings (clinically treated). Based on Hampson2016****.

We aim to utilize existing ECMO reimbursement for the HBOX treatment since both use the mechanism of extracorporeal membrane oxygenation.

Potential reimbursement				
DRG X62Z	Additional fee OPS 8-852.00 for medical device			
€2,300	+	€10,600		

- Sufficient to cover the cost of HBOX disposable
 - Remaining amount as profit for hospital → incentive

INVESTMENT CASE

TECHNOLOGICAL STRATEGY

Vision HBOX as a platform technology for hyperbaric blood oxygenation

Oxygen deficiency is the cause of many diseases and other problems

Cancer treatment

The HBOX delivers extremely high oxygen concentrations into the blood to provide added value in various applications:

٠

- 1. Oxygen displaces carbon monoxide from the blood
- 2. Hyperoxygenation allows for miniaturized devices
- 3. Blood with high oxygen concentrations supplies oxygen deficient tissue
- 4. Oxygen in hypoxic tumors enhances the effects of the treatments

15 TRL: Technology readiness level * Minimally-invasive Respiratory Assist

Niklas Steuer

Co-founder & Managing Director Strategy & Operations

5+ yrs in medical devices

MSc mechanical engineering Training in organization development & leadership

Dr. Peter Schlanstein

Co-founder & Managing Director Technology & Production

11+ yrs in medical devices

PhD mechanical engineering Inventor

Dr. Matthias Menne

Co-founder & Managing Director Finance & Marketing

5+ yrs in medical devices

PhD theoretical medicine MSc business, economics & management MSc mechanical engineering

Dr. Christiane Hoffmann Team member

QM & RA

23+ yrs in medical devices

PhD materials science Diploma biology Production, QM, RA CE certificate for class 3 device

SUPPORT & MENTORS

Entrepreneurial support

Prof. Dr.-Ing. Ulrich Steinseifer Successful serial entrepreneur MedTech Head of department CVE, RWTH Aachen

Dr. Tim Kaufmann Successful serial entrepreneur MedTech Co-Founder & CEO enmodes GmbH

Clinical support

PD Dr. med. Rüdger Kopp Chief Emergency Doctor Aachen UK Aachen

Dr. med. Thorsten Janisch Anesthetist & pressure chamber physician

Prof. Dr. med. Hans-Gert Heuft Director Institute for Transfusion Medicine & Immune Hematology with Blood Bank University Hospital Magdeburg

CALL TO ACTION

Are you a potential investor or strategic partner looking to join our journey?

We are currently compiling our next financing round of € 3.4 mn for 2022!

Contact us: <u>menne@HBOX-therapies.com</u>

